The Development of Standards Using a Multi-stakeholder Process

Deana Sexson - UW - Madison
NPM Program, Department of Horticulture
Outline of Presentation

♦ The WI Healthy Grown Program
 • History of Eco-Potato Project
 • Developing Production Standards
 • Healthy Grown Market

♦ Why Would Growers Do This?

♦ Exporting the Model

♦ Where are Healthy Grown and Other Programs Going?
WWF/WPVGA/UW Collaboration - History

Growers Setting The Stage To Do The Right Thing!
WWF/ WPVGA/ UW Collaboration - Goals

- Reduce pesticide use, reliance and risks
- Increase adoption of biointensive IPM
- Enhance wildlife and ecosystem conservation and protect biodiversity
- Raise consumer demand for ecologically produced potatoes
- Develop and field test measurement methods
Developing Research Based Production Standards

Do one process, learn from it, then expand.

Accelerating BioIPM Adoption
Advisory Committee – 19 members
- National representation of growers, consumer reps, environmental reps, industry, banking, etc.
- Meeting in Fall each year to direct priorities of Collaboration

Executive Committee – 8 members
- Decision making body
- 2 UW, 2 WPVGA, 2 Growers, 2 Environmentalists
- Monthly Conference Call, In-Face meetings
WI Eco-Potato Standard Development Structure

- Large committee of:
 - Growers
 - Shippers
 - Consultants
 - Environmental Groups
 - Grower Group Reps (WPVGA)

- Three Consecutive Monthly Meetings to develop standards and structure – Facilitated Process
Developing Research Based Production Standards

Certification

Label

Standards

Chain of Custody

Marketing
Based on University of Wisconsin research

All practices researched based, ecologically viable and economical

Number and cutoff based on previous survey work and measurement instruments developed by the Collaboration - Need baseline data
Scouting Section

1A Whose scouting data did you use to make management decisions on this field?
(check only one)

- Farm Dealer/Co-op = 1 point
- Independent Crop Consultant = 5 points
- IPM Trained Farm Employee = 4 points
- Farm Owner/Manager = 4 points
- Farm Employee = 2 points

Variety Designation:
Short season (SS) = less than 90 days from emergence to final vinekill
Long season (LS) = more than 90 days from emergence to final vinekill

1B Bonus: If additional scouting data was taken, who provided this data?
(check only one)

- Farm Dealer/Co-op = 1 point
- Independent Crop Consultant = 5 points
- IPM Trained Farm Employee = 4 points
- Farm Owner/Manager = 4 points
- Farm Employee = 2 points
- No One = 0 points

Please answer the following for the field which you are certifying.
Eco-label Standards

♦ IPM portion - Nine Categories Include
 • Scouting
 • Information Gathering
 • General Pest Management Decisions
 • Field Management Decisions
 • Weed Management
 • Insect Management
 • Disease Management
 • Soil and Water Quality
 • Storage Management

♦ Ecological Restoration Component
Eco-label Standards

Sample Scouting Question

1D What was the most common scouting method?
(choose only one)

- Informal observations during routine farming operations (e.g., while spraying or while going out to check irrigation equipment).
 \(= 0 \text{ points}\)
- Informal observations of what was happening on the edge of the field.
 \(= 1 \text{ point}\)
- Crop scouts focused mostly on looking for potential hot spots and spot-checking where problems have occurred in the past.
 \(= 3 \text{ points}\)
- Crop scouts followed specific patterns along pivot irrigation tracks, along field borders and in the interior of the field.
 \(= 5 \text{ points}\)

Point total for question 1D

\(\text{possible range 0-5} \)

If 0, then stop here.
Eco-label Standards

4C Did you plant certified seed?
- **Yes** = 3 points
- **No** = 0 points

4D How many times were aerial photos (e.g. remote sensing) used during the growing season?
- **Weekly** = 3 points
- **Twice per month** = 2 points
- **One to two times per growing season** = 1 point
- **Never** = 0 points

4E Bonus: Did you use any other types of remote sensing (e.g. satellite images) on this field?
- **Yes** = 5 points
- **No** = 0 points

Bonus Question
To determine the toxicity units for the season, total the pounds of active ingredient for each compound and multiply by the toxicity value for that compound. Total toxicity units for all compounds sprayed during the growing season.

Maximum toxicity units:

- **SS =** 800 toxicity units per acre for the season.
- **LS =** 1200 toxicity units per acre for the season.

Toxicity Unit Exceptions for Late Blight

- If 18 severity values are reached by June 1st, 400 more toxicity units may be used for **fungicides only**.
- If 18 severity values are reached by June 15th, 200 more toxicity units may be used for **fungicides only**.

The following conditions apply only when late blight is found in the vicinity (within 25 miles of field):

- If there are 18 severity values and late blight is found in the vicinity in June, than add 400 toxicity units.
- If there are 18 severity values and late blight is found in the vicinity after June 30th but before July 15th, than add 300 toxicity units.
- If there are 18 severity values and late blight is found in the vicinity after July 15th but before August 1st, than add 200 toxicity units.
- If there are 18 severity values and late blight is found in the vicinity in August, than add 100 toxicity units.
Eco-label Standards

<table>
<thead>
<tr>
<th>Insecticide</th>
<th>Trade Name</th>
<th>Toxicity Score</th>
<th>Health Risk Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldicarb</td>
<td>Temik®</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azinphos-methy</td>
<td>Guthion®</td>
<td>307</td>
<td>185</td>
</tr>
<tr>
<td>Btt</td>
<td>Novodor®</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Cyfluthrin</td>
<td>Baythroid®</td>
<td>452</td>
<td>14</td>
</tr>
<tr>
<td>Carbaryl</td>
<td>Sevin®</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbofuran</td>
<td>Furadan®</td>
<td>401</td>
<td>200</td>
</tr>
<tr>
<td>Diazinon</td>
<td>Diazanon®</td>
<td>343</td>
<td>103</td>
</tr>
<tr>
<td>Dimethoate</td>
<td>Dimethoate/Cygon®</td>
<td>355</td>
<td>143</td>
</tr>
<tr>
<td>Disulfoton</td>
<td>Disyston®</td>
<td>541</td>
<td>271</td>
</tr>
<tr>
<td>Endosulfan</td>
<td>Thiodan®, Phaser®</td>
<td>271</td>
<td>217</td>
</tr>
<tr>
<td>Esfenvalerate</td>
<td>Asana®</td>
<td>482</td>
<td>24</td>
</tr>
<tr>
<td>Ethoprop</td>
<td>Mocap®</td>
<td>339</td>
<td>1017</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>Admire®</td>
<td>159</td>
<td>32</td>
</tr>
<tr>
<td>Malathion</td>
<td>Cythion®</td>
<td>132</td>
<td>93</td>
</tr>
<tr>
<td>Methamidophos</td>
<td>Monitor®</td>
<td>339</td>
<td>338</td>
</tr>
<tr>
<td>Methoxomyl</td>
<td>Lannate®</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxamyl</td>
<td>Vydate®</td>
<td>440</td>
<td>132</td>
</tr>
<tr>
<td>Permethrin</td>
<td>Ambush/Pounce®</td>
<td>288</td>
<td>43</td>
</tr>
<tr>
<td>Phorate</td>
<td>Thimet/Phorate®</td>
<td>625</td>
<td>1563</td>
</tr>
<tr>
<td>Phosmet</td>
<td>Imidan®</td>
<td>133</td>
<td>134</td>
</tr>
<tr>
<td>Piperonyl butoxide</td>
<td>Incite®</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Pymetrozine</td>
<td>Fulfill®</td>
<td>123</td>
<td>21</td>
</tr>
<tr>
<td>Spinosad</td>
<td>Spinosad®</td>
<td>172</td>
<td>17</td>
</tr>
</tbody>
</table>
Why do the growers do it?
Grower Motivation to Participate

- Public Recognition
- To Get Ahead of the Regulatory Curve
- Public Investment
- Drive Public Policy
- It’s the right thing to do
- Market Advantage
Expansion to other industries

- Groups using WI model as a template to develop standards – keys
 - Partnerships of People – Diverse backgrounds and Expertise
 - Categorizing key environmental or sustainability issues for area – NOT all the same!
 - Exporting the “Process” versus the “Program” – each area should be individuated
 - Advisory role for people in programs and project management
 - Advisory Committee, Executive Committee, Science based, etc.
Keys to Successful Partnerships

- Leadership, vision and partners.
- Recognizing the importance of integrating all farm
- Identifying the need for and raising funds to support full time professional farming systems coordinator positions.
- Identifying the importance of strong team management.
- Having multiple stakeholders and institutions as partners.