IPM Technology Transfer and Adoption

Gregory C. Luther
IPM / Development Specialist
AVRDC – The World Vegetable Center
IPM Technology Transfer and Adoption

- **Goal**: To maximize adoption of IPM technologies for the resources expended.

- **Factors**
 - Capabilities of institutions involved in tech transfer
 - Farmers: resources, education and socio-economic situations
 - Appropriate transfer methods for various IPM technologies
 - Technology availability, awareness, and suitability
Maximizing IPM adoption

- Integration of many factors requires a multi-faceted approach
- Which institutional mechanisms can be strengthened to increase diffusion of IPM knowledge?
- What is the optimal combination of approaches for spreading IPM technologies?
Technology Transfer Methods/Approaches

- Radio or TV programs, videos
- Dramas
- Campaigns to spread simple messages
- Demonstration plots
- Field days
- Fact sheets, booklets, leaflets, posters
- IPM curriculum in K-12 school programs
- Mobile IPM teaching laboratories
- Farmer Field Schools (FFS)
A combination of approaches is likely to be most effective and efficient

- Some IPM technologies can be transmitted in simple messages (e.g. in media broadcasts)
- Others need more in-depth forums (e.g. Farmer Field Schools)
- Need to consider the farmer’s literacy, gender issues, and other socio-economic factors
Multiple institutions

- Raise chance of success by utilizing multiple institutions to transfer technologies, due to strengths and weaknesses of each
Institutional strengths and weaknesses

- **Publicly-funded extension programs:**
 - **Strengths:**
 - reaching small farms and resource-poor farmers
 - extending socially and environmentally beneficial information
 - **Weaknesses:**
 - reduced budgets
 - agents lack resources and are over-extended
Institutional strengths and weaknesses

- **Private sector:**
 - **Strengths:**
 - where it is profitable, IPM will be strongly promoted
 - use of scarce public resources is minimized
 - marketplace demands are brought back to growers
 - **Weaknesses:**
 - may neglect resource-poor farmers
 - may not promote IPM technologies that do not involve profitable products (e.g., chemicals, seeds)
Institutional strengths and weaknesses

- **Non-governmental organizations (NGOs):**
 - **Strengths:**
 - reaching resource-poor farmers
 - promoting IPM technologies that are environmentally friendly and management intensive
 - strong community-level contacts
 - **Weaknesses:**
 - often lack in-depth technical knowledge
 - projects usually targeted to small areas and of short duration
Multiple institutions

- Optimal to have multiple institutions due to:
 - Above strengths and weaknesses
 - Relative presence of each type of institution differs by country
Assessing Adoption

- In the Philippines, IPM CRSP assessed factors influencing willingness to adopt onion IPM technologies.
- IPM technologies considered:
 - Rice hull burning to manage nematodes
 - Trap cropping with castor
 - Bt and NPV to control armyworms

Cuyno 1999
176 farmers surveyed

Factors significantly affecting adoption:

- Information variables, such as source of pest management advice and participation in IPM training
- Previous use of protective measures against pesticide exposure
- Several other factors to a lesser degree

Cuyno 1999
Assessing Adoption

- In Uganda, IPM CRSP analyzed adoption of 8 IPM technologies on cowpea, groundnut and sorghum.
- 5 technologies had <25% adoption.
- 3 technologies had >75% adoption.

Bonabona-Wabbi 2002
Higher adoption of most IPM practices associated with:

- Farmers’ participation in on-farm trial demonstrations
- Accessing agricultural knowledge through researchers
- Prior participation in pest management training

Bonabona-Wabbi 2002
Assessing Adoption

- In Ecuador, IPM CRSP studied adoption of potato IPM practices
- 109 potato farmers surveyed
- Main determinants of adoption:
 - Access to information through FFS
 - Field days
 - Pamphlets
 - Exposure to FFS participants

Mauceri, Alwang, Norton and Barrera (in review)
IPM CRSP / Ecuador study

- Cost-effectiveness of methods:
 - Field days and pamphlets strongly impact adoption, taking into account their low cost

- Technology transfer from FFS farmers to non-FFS farmers is occurring

Mauceri, Alwang, Norton and Barrera (in review)
Campaigns to spread simple messages

- In Vietnam, pesticide use on rice was reduced by more than 50% in large areas where the message: “No spray for the first 40 days on rice” was widely broadcast.

Heong et al. 1998
Impacts of Farmer Field Schools

- A synthesis of 25 impact evaluations of FFS showed:
 - “Substantial and consistent reductions in pesticide use attributable to the effect of training”.
 - Increases in yield in many cases.
 - Many developmental impacts, among them that FFS motivated continued learning.

van den Berg 2004
Impacts of Farmer Field Schools

- Four large nationwide studies on rice in Bangladesh, Vietnam and Indonesia showed 35-92% reductions in pesticide use

Larsen et al. 2002
Pincus 1999
SEARCA 1999
FAO 1993
Impacts of Farmer Field Schools

- Two independent studies on rice in Sri Lanka demonstrated that farmers who had participated in FFS more than 5 years earlier were using only one-third the amount of pesticides as control farmers.

Tripp, Wijeratne and Piyadasa 2005
van den Berg, Senerath and Amerasinghe 2002
Impacts of Farmer Field Schools

- A study on vegetables in Vietnam documented a 53% reduction in pesticide use and 18% increase in yields due to FFS (ADDA 2002)
- In Bangladesh, FFS participants had an 80% reduction in pesticide use and 25% increase in yield for eggplant (Larsen et al. 2002)
Impacts of Farmer Field Schools

- An atypical result:
 - On rice in Indonesia, FFS farmers showed an 81% increase in pesticide expenditures and 11% reduction in yield, over an 8-year period
- However, control farmers showed a 169% increase in pesticide expenditures and 15% reduction in yield

Feder, Murgai and Quizon 2004
Conclusions

- A mix of technology transfer methods and strategies, tailored to the specific situation, is likely to be most effective.
- Participatory appraisals enable the process of designing the tech transfer strategies to best fit each local situation.