Offshore Biological Control Strategy Applied to Pink Hibiscus Mealybug

Dale E. Meyerdirk
USDA, APHIS, PPQ
Riverdale, MD
Biological Control of Invasive Species in the Caribbean Region

Attack the pest problem abroad prior to invasion

- “Buys Time” to develop control technology
- Suppresses exploding pest populations
- Reduces rate of dispersal between islands and entering Continental U.S.
- Prolonged invasions reduces potential economic losses
Classical Biological Control

- Importing and releasing exotic natural enemies that become established and self-perpetuating
- Environmentally sound pest control
- Self-sustaining
- Relatively easy to implement
- Cost efficient
Biological Control of the Pink Hibiscus Mealybug - Caribbean

- Serves as a “Model” for control of an invasive pest species in the Caribbean
- Excellent Caribbean Regional Cooperative Effort
- Cost Sharing
- Biological control technology easily transferred
Pink Hibiscus Mealybug, *Maconellicoccus hirsutus* (Green)
World Distribution Prior to 1994
Economic Losses from Pink Hibiscus Mealybug

- **INDIA**: Pest Status - grapes 58-90% losses, rosell or sorrel (Hibiscus sabdariffa) losses up to 75%, heavy infestations on cotton and teak

- **EGYPT**: Cotton damage

- **GRENADA**: IICA est. of economic, social + environmental = US $3,471,900; Crop Losses 1995-97 was US$1.8 million/year Potential Annual Losses = $ 10 mil./year
Economic Losses (Contin.)

- **TRINIDAD AND TOBAGO**: Potential Losses of $125 million TT Dollars
- **ST. KITTS**: Significant loss of ornamentals, export losses on pumpkins, etc., no sorrel production.
- **U.S. VIRGIN ISLANDS**: Significant Losses to ornamentals (hibiscus) and soursop.
Risk Assessment of PHM

Host Range

- Risk Element: **HIGH**

- PHM is Polyphagous

- Feeds on more than 200 plant genera within 70 plant families
Pink Hibiscus Mealybug Host Plants

<table>
<thead>
<tr>
<th>Fruits</th>
<th>Ornamental</th>
<th>Vegetable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Papaya</td>
<td>Hibiscus</td>
<td>Tomato</td>
</tr>
<tr>
<td>Sugar-apple</td>
<td>Croton</td>
<td>Pumpkin</td>
</tr>
<tr>
<td>Golden apple</td>
<td>Allamanda</td>
<td>Okra</td>
</tr>
<tr>
<td>Pigeon pea</td>
<td>Anthurium</td>
<td>Lettuce</td>
</tr>
<tr>
<td>Carambola</td>
<td>Heliconia</td>
<td>Beans</td>
</tr>
<tr>
<td>Soursop</td>
<td>Lantana</td>
<td>Cucumber</td>
</tr>
<tr>
<td>Cherry</td>
<td>Seagrape</td>
<td>Peppers</td>
</tr>
<tr>
<td>Passion fruit</td>
<td>Bougainvillea</td>
<td>Dasheen</td>
</tr>
<tr>
<td>Avocado</td>
<td>Oleander</td>
<td>Cabbage</td>
</tr>
<tr>
<td>Mango</td>
<td>Ginger lily</td>
<td>Squash</td>
</tr>
<tr>
<td>Plum</td>
<td>Schefflera</td>
<td></td>
</tr>
<tr>
<td>Grape</td>
<td>Ficus</td>
<td></td>
</tr>
<tr>
<td>Citrus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breadfruit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guava</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banana</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Risk Assessment of PHM

Dispersal Potential

- Risk Element: HIGH
- High reproductive potential
 - 10 generations/year
 - Female Egg Sac >600 eggs
- Highly mobile life stages by wind, animals, man, and machinery
Risk Assessment of PHM
Economic Impacts to US

- Risk Element: HIGH
- Reduce Commodity Yield
- Lower Commodity Value
- Result in Loss of Markets
- Potential Economic Losses $2 Billion/year
 (2003 Dollars)
Risk Assessment of PHM

Environmental Impact

- Risk Element: HIGH
- Damage to agriculture, forestry and horticulture
Spread of Pink Hibiscus Mealybug in Caribbean

No. Countries/Islands

Year

Spread of Pink Hibiscus Mealybug Throughout Western Hemisphere

- **1984** - Hawaii
- **1994** - Grenada, Carriacou
- **1995** - Trinidad, St. Kitts and Nevis
- **1996** - Tobago, Aruba, St. Maarten, St. Lucia
- **1997** - St. Eustatius, Curacao, Anguilla, Guyana, British Virgin Islands, St. Vincent, Grenadines, St. Thomas, St. Croix, St. John, Culebra, Vieques
- **1998** - Montserrat, Guadeloupe, Puerto Rico
- **1999** - Martinique, USA (California), Belize, Mexico, Venezuela?
- **2000** - Barbados, Bahamas
- **2001** - Antigua, Dominica, Suriname
- **2002** - Florida (USA), Haiti, Dominican Republic
Western Hemisphere Countries Infested with Pink Hibiscus Mealybug as of July 2004

- **PHMB present**
- **PHMB free**
Risk Assessment of PHM
US Entry Potential Consideration

- Risk Element: HIGH

- PHM Intercepted 813 times (PIN 2003)
Maconellicoccus hirsutus Interceptions at Ports of Entry Into United States From Caribbean

Note: Baggage = 211, Cargo = 8, Ship Store = 4
Risk Assessment of PHM
Habitat Suitability In US

- Risk Element: HIGH

- Attacks and survives on hosts in 4 or more plant hardiness zones
Climate Exclusion Map for PHM (75 days/yr with minimum daily Temperature lower than 0 degrees C)
Figure 2. Climex simulation showing PHM potential ecological range

Denotes areas with greater than 75% climatological similarity to areas where PHM is endemic
Damage

-Pink Hibiscus Mealybug-

- Toxic saliva
- Results in malformation of leaves, fruit and shoot growth
- Stunting of plant growth
- Occasional death of plant
- Shortened internodes = “Bunchy Top”
- Black Sooty Mold
PHM
Defoliated Hibiscus
Healthy Sammon Tree
Dead Sammon Tree - Grenada
With PHM Egg Mass
Healthy Soursop Fruit
Hawaii Infestation - Pink Hibiscus Mealybug -

- Since 1983
- **Not** an economically important pest
- Attacked by two primary, internal hymenopterous parasites
- Parasites:
 - 1) *Anagyrus kamali* Moursi
 - 2) *Anagyrus* sp.
Exotic Parasitoids Introduced

- Quarantine Facility – USDA, ARS, Newark, Delaware
- *Anagyrus kamali*
 - China
 - Hawaii
 - Taiwan
- *Gyranusoidea indica*
 - Egypt
 - Pakistan
 - Australia
- *Allotropa mecrida*
 - Egypt
 - Puerto Rico
Economic Benefits of Biocontrol Program

- 750 Million Dollars/Year Loss (1997)
- Estimated cost of Biological Control Technology Development and Transfer = $500,000/year for 3 to 5 years
- Expected Economic Benefits to Costs Ratio for a Single Year Exceeds 1500:1
- Based on 1997 Dollars and value of: Avocado, Citrus, Cotton, Grape, Mango, Ornamentals and Vegetables
Anagyrus Kamali
Technology Transfer of PHM
Biological Control Program To:

- St. Kits, W.I. - 1996
- US Virgin Islands - 1998
 - St. Thomas
 - St. Croix
 - St. John
- Puerto Rico - 1999
 - Vieques
 - Culebra
- Belize - 1999
- California - 1999
- Bahamas - 2000
- St. Eustatius - 2001
- Haiti - 2002
- Dominican Republic - 2002
- Florida - 2002
Impact of Parasites on Pink Hibiscus Mealybug – St. Kitts, W.I.

92% Reduction
Impact of Parasites on Pink Hibiscus Mealybug
St. Thomas, U.S.V.I. (Hibiscus)

Ave. No. 2nd-Adult MB/Terminal

<table>
<thead>
<tr>
<th>Month</th>
<th>1997-1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>July</td>
<td>450</td>
</tr>
<tr>
<td>Aug.</td>
<td>500</td>
</tr>
<tr>
<td>Nov.</td>
<td>100</td>
</tr>
<tr>
<td>Jan.</td>
<td>200</td>
</tr>
<tr>
<td>Feb.</td>
<td>300</td>
</tr>
<tr>
<td>March</td>
<td>400</td>
</tr>
<tr>
<td>April</td>
<td>250</td>
</tr>
<tr>
<td>May</td>
<td>300</td>
</tr>
<tr>
<td>Aug.</td>
<td>500</td>
</tr>
<tr>
<td>Oct.</td>
<td>100</td>
</tr>
<tr>
<td>Jan.</td>
<td>150</td>
</tr>
<tr>
<td>Feb.</td>
<td>0</td>
</tr>
</tbody>
</table>

% Parasitization

- 91.2% Reduction

Reducing the population by 91.2% seems to be effective, but it is necessary to maintain a consistent management strategy to ensure long-term control.

Mealybug:
Parasite:
Impact of Parasites on Pink Hibiscus Mealybug
St. Coix, U.S.V.I. (Hibiscus)

Ave. No. 2nd-Adult MB/Terminal

% Parasitization

97.1% Reduction

1997-1999

Mealybug
Parasite
Impact of Parasites on Pink Hibiscus Mealybug Puerto Rico (Hibiscus)

92% Reduction

1998 - 2000
Impact of Parasites on Pink Hibiscus Mealybug Vieques (Hibiscus)

Ave. No. 2nd-Adult MB/Terminal

Ave. % Parasitization

97.8% Reduction

1998 - 1999
Impact of Parasites on Pink Hibiscus Mealybug
Belize - Hibiscus

Ave. No. 2nd-Adult MB/Terminal

% Parasitization

96.6% Reduction

Mealybug Parasites

0 10 20 30 40 50 60 70 80

1999 2000
Pink Hibiscus Mealybug in Imperial County, California (Mulberry)

Ave. No. 2nd to Adult MB/Terminal

- Mealybug
- Parasite

96% Reduction

1999-2001
Impact of Parasites on Pink Hibiscus Mealybug - Florida (Hibiscus)

98.7% Reduction
Impact of Parasites on Pink Hibiscus Mealybug - Nassau, New Providence, Bahamas (Hibiscus)

82% Reduction

Ave. No. 2nd-Adult MB/Terminal

2001-2002
Impact of Parasites on Pink Hibiscus Mealybug - Haiti (Hibiscus)

97.2% Reduction

2002 - 2003
Impact of Parasites on Pink Hibiscus Mealybug - Dominican Republic (Hibiscus)

96.6% Reduction
Level of PHM Population Density Reduction by Parasitoids

Hibiscus
- St. Kitts = 91.6%
- US Virgin Islands
 - St. Thomas = 91.2%
 - St. Croix = 97.1%
- Puerto Rico = 92%
- Culebra = 96.5%
- Vieques = 97.8%
- Belize = 96.6%

California
- Mulberry = 96%
- Carob = 93%

Bahamas = 82%
 (1 year)

Florida = 98.7%

Haiti = 97.2%

Dominican Republic = 96.6%
Potential Spread of PHM in United States in 2005

- Florida Nursery Shipped 900,000 potted hibiscus plants to 36 States from January to July 2005
- 11 of 17 States Climatically suitable for PHM
- Shipments were found to be partly infested with PHM in Late July 2005
Potential Spread of PHM in United States in 2005

- Shipments made to Garden Centers of Major Establishments

- PHM recovered from Garden Centers in Louisiana, North Carolina and Kansas.
Homestead, Florida Shipments from January through July 2004

Potted Hibiscus Plants Potentially Infested with Pink Hibiscus Mealybug