System Drivers of IPM for Onion Thrips and Iris Yellow Spot Virus in Onion

Diane G. Alston¹, Claudia Nischwitz², Daniel Drost³, Jennifer Reeve⁴, Corey Ransom⁵, and Ruby Ward³

¹Department of Biology; ²Department of Plants, Soils, and Climate; and ³Department of Applied Economics
Utah State University, Logan, UT 84322

Overview
Onion (Allium cepa L.) is attacked by a complex of pests: onion thrips (Thrips tabaci Lindeman) and the Tospovirus, Iris yellow spot virus (IYSV), which are the most economically important in North America. Overuse of insecticides to suppress thrips, the vector of IYSV, has led to resistance. Analyses of field- and farmscape-scale crop and pest management factors identified key drivers for IPM in Utah onion systems. Using Random Forest Analysis, we identified significant predictors of high IYSV incidence and thrips densities, high nitrogen (N) content in onion leaves, low soil inorganic N, and low number of insecticide applications. High thrips densities were associated with high onion leaf N, low soil inorganic N, and low soil dehydrogenase, an indicator of microbial activity and soil health. Alternate crop and weed hosts in the farmscape were found to harbor thrips and IYSV, and can serve as a green bridge between and within growing seasons: alfalfa, common mallow, field bindweed, flixweed, prickly lettuce, and shepherd’s purse. Volunteer onions and cull piles can also be significant sources of thrips and virus.

Goals
1. Increase knowledge and awareness of how onion production practices affect risk, costs, and returns.
2. Change onion producer attitudes to be more favorable for use of less nitrogen and insecticide inputs.
3. Change onion production management practices to a whole-farm approach that incorporates crop rotation, weed management, and promotes healthy soils.

Field-Scale Factors
Thrips densities varied greatly among Utah commercial onion fields, months of the year, and years

Effect of location within a field on thrips densities and onion growth

- More thrips were found on onions near the field edge (10 ft from edge) than in the interior (250 ft from edge).
- Onion plants were of similar size between edge and interior locations.
- However, onion bulb diameter was smaller near field edges suggesting that higher onion thrips reduced bulb size.

Effect of nitrogen fertilizer application rate on thrips densities

- 35% increase
- Lo = 120 lb N/acre, Hi = 350 lb N/acre
- 27% increase

Random Forest Classification – search for system drivers

- Random Forest classification analysis identified significant predictors of IYSV incidence and onion thrips densities in onion fields*

<table>
<thead>
<tr>
<th>Variable</th>
<th>Relationship</th>
<th>Variable</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>IYSV (season cumulative)</td>
<td>73% of variability explained</td>
<td>Thrips (season cumulative)</td>
<td>79% of variability explained</td>
</tr>
<tr>
<td>Thrips densities</td>
<td>positive</td>
<td>Thrips Jun - Jul</td>
<td>positive</td>
</tr>
<tr>
<td>Onion Leaf N; Jul & Aug</td>
<td>positive</td>
<td>Onion Leaf N; Jul & Aug</td>
<td>positive</td>
</tr>
<tr>
<td>Soil inorganic N</td>
<td>negative</td>
<td>Soil inorganic N</td>
<td>negative</td>
</tr>
<tr>
<td>Soil dehydrogenase</td>
<td>negative</td>
<td>Soil dehydrogenase</td>
<td>negative</td>
</tr>
<tr>
<td># insecticide sprays</td>
<td>negative</td>
<td># insecticide sprays</td>
<td>negative</td>
</tr>
</tbody>
</table>

Prediction of IYSV Incidence (ELISA Results)

Farmscape-Scale Factors
Alternate hosts serve as green bridges between growing seasons and fields

Thrips densities and IYSV incidence in adjacent crops and weed borders
- Onion thrips adults and larvae were abundant on onion, alfalfa, and weeds, but fewer larvae were found on corn and wheat.
- All plant groups were positive for IYSV, except corn.
- In targeted weed sampling along field edges in May and June of 2013-14, weed species supporting highest densities of onion thrips adults and larvae, and highest incidence of IYSV, included flixweed, field bindweed, common mallow, and prickly lettuce.

Summary and Implications
Field- and farmscale-effects
- Crop management influences thrips & IYSV
 - High N may increase plant apparent, attraction, & digestibility, and reduce 2nd compounds.
 - IYSV incidence was predicted by high thrips densities & onion leaf N content, and low soil inorganic N & no. of thrips sprays.
- Adjacent crops & weeds function as green bridges for thrips & IYSV
 - Alfalfa, flixweed, field bindweed, common mallow & prickly lettuce were most important green bridge hosts across growing seasons & the farmscape.
- Field edge effects on thrips & IYSV
 - Proximity of alternate host crops & weeds, visual attraction, difference in crop management.
- A systems management approach can stabilize & sustain onion production